Grammars

See Chapter 5 of the text

Is the language of arithmetic expressions such as 22+33*44 regular?

Well, yes if you think that such an expression just has the form number operator number operator ... number
Here is a regular expression for the language: (digit ${ }^{+}$operator) ${ }^{*}$ digit $^{+}$

This fails as soon as we add parentheses to the language to get $(22+33) * 45$ or $(((((3)))))$ It is easy to show that the parenthesized language fails the pumping lemma test.

We need a way to specify languages that are more complex than regular languages. So we turn to grammars.

Before we see definitions here is an example: a grammar that defines the language of parenthesized arithmetic expressions.
$E=>E+T$
$\mathrm{E}=>\mathrm{E}-\mathrm{T}$
$\mathrm{E}=>\mathrm{T}$
$T=>T^{*} F$
$\mathrm{T}=>\mathrm{T} / \mathrm{F}$
$\mathrm{T}=>\mathrm{F}$
$F=>(E)$
$\mathrm{F}=>\mathrm{G}$
G => G digit
G =>digit

We derive a string in the language determined by this grammar by starting with E (the start symbol) and repeatedly replacing one of the symbols E,T,F,G with the right hand side of one of the grammar rules for that symbol. For example, we can replace E with E+T, E-T, or T. This substitution process continues until there are no remaining E,T,F or G symbols.

For example:

$$
\begin{aligned}
\mathrm{E} & =>\underline{T} \\
& =>\underline{T}^{*} \mathrm{~F} \\
& =>\underline{F}^{*} \mathrm{~F} \\
& =>\underline{G^{*}} * \\
& =>3^{*} \underline{F} \\
& =>3^{*}(\underline{\mathrm{E}}) \\
& =>3^{*}(\underline{\underline{E}}+\mathrm{T}) \\
& =>3^{*}(\underline{T}+T) \\
& =>3^{*}(\underline{\mathrm{~F}}+\mathrm{T}) \\
& =>3^{*}(\underline{G}+\mathrm{T}) \\
& =>3^{*}(4+\underline{T}) \\
& =>3^{*}(4+\underline{F}) \\
& =>3^{*}(4+\underline{G}) \\
& =>3^{*}(4+5)
\end{aligned}
$$

On the other hand, $3++4$ is not a string that can be derived from this grammar. If we tried to derive it, the only rule with a + symbol is $\mathrm{E}=>\mathrm{E}+\mathrm{T}$. Nothing in T or below contains $\mathrm{a}+$, so the E on the right hand side would need to generate $3+$. That E could again go to $\mathrm{E}+\mathrm{T}$ to match the 3 and + , but the resulting T can't derive ε.

In general, a grammar is a 4-tuple ($\Sigma, \mathrm{N}, \mathrm{S}, \mathrm{P}$) where

- Σ is a finite alphabet of terminal symbols (like Σ)
- N is a finite alphabet of non-terminal or grammar symbols
- $\mathrm{S} \in \mathrm{N}$ is the start symbol
- P is a finite set of production rules. Each rule has the form $\alpha=>\beta$, where α and β are both strings in $(\Sigma+N)^{*}$.

To save space, we often write all of the rules that have the same left side on one line, separating the right sides with \mid. The previous grammar would be written

$$
\begin{aligned}
& E=>E+T|E-T| T \\
& T=>T^{*}|T / F| F \\
& F \Rightarrow(E) \mid G \\
& G=>G \operatorname{digit} \mid \operatorname{digit}
\end{aligned}
$$

A derivation is a sequence of steps that replaces the left side of a production rule with the right side of this rule. We usually continue derivations until we have derived a string of terminal symbols.

Here is another grammar:
Terminal symbols: $\{a, b, c\}$
Nonterminal symbols: $\{\mathrm{S}, \mathrm{T}, \mathrm{U}\}$
The start symbol is S
Rules:

$$
\begin{aligned}
& S=>a S T U \\
& S=>a b U \\
& b T=>b b \\
& b U=>b c \\
& U T=>T U \\
& c U=>c c
\end{aligned}
$$

Here is a quick derivation:

$$
\begin{aligned}
S & =>a b U \\
& =>a b c
\end{aligned}
$$

Here is another derivation:

$$
\begin{aligned}
S & =>~ a S T U \\
& =>~ a a b U T U \\
& =>~ a a b T U U \\
& =>~ a a b b U U \\
& =>~ a a b b c U \\
& =>~ a a b b c c
\end{aligned}
$$

It isn't terribly difficult to show that this grammar generates the language $\left\{a^{n} b^{n} c^{n}: n>=1\right\}$

Grammars can be categorized by the types of rules they allow:

Regular Grammars: All production rules are either of the form
$A=>a$ or $A=>a B$, where A and B are nonterminal symbols and a is a terminal symbol.

Context Free: All production rules have the form $A=>\alpha$, where A is a single nonterminal symbol and α might have both terminals and nonterminals.

Context Sensitive: All production rules have the form $\alpha=>\beta$, where α and β are strings in $(\Sigma+N)^{*}$ with $|\alpha|<=|\beta|$

Arbitrary

Here is a look ahead:

The Chomsky Hierarchy

Grammar	Machine that Recognizes
Regular	DFA
Context Free	PDA (DFA+Stack)
Context Sensitive	Turing Machine with bounded memory
Arbitrary	Turing Machine

For any type of grammar, if w_{1} and w_{2} are strings in $(\Sigma+\mathrm{N})^{*}$, we say $w_{1}=>w_{2}$ if there is a grammar rule $\alpha=>\beta$, where α is a substring of w_{1} and w_{2} can be produced from w_{1} by replacing α with β.

We say $\mathrm{w}_{1} \stackrel{*}{\Rightarrow} \mathrm{w}_{2}$ if there is a sequence of strings $\mathrm{v}_{1} \ldots \mathrm{v}_{\mathrm{n}}$ with

$$
w_{1}=v_{1}=>v_{2}=>\ldots=>v_{n}=w_{2}
$$

The language defined by the grammar is $\left\{w \in \Sigma^{*} \mid S \xlongequal{*} w\right\}$

